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Abstract 32 

Invasive termites are destructive insect pests that cause billions of dollars in property damage 33 

every year. Termite species can be transported overseas by maritime vessels. However, only if 34 

the climatic conditions are suitable will the introduced species flourish. Models predicting the 35 

areas of infestation following initial introduction of an invasive species could help regulatory 36 

agencies develop successful early detection, quarantine, or eradication efforts. At present, no 37 

model has been developed to estimate the geographic spread of a termite infestation from a set of 38 

surveyed locations. In the current study, we used actual field data as a starting point, and relevant 39 

information on termite species to develop a spatially-explicit stochastic individual-based 40 

simulation to predict areas potentially infested by an invasive termite, Nasutitermes corniger 41 

(Motschulsky), in Dania Beach, FL.  The Monte Carlo technique is used to assess outcome 42 

uncertainty.  A set of model realizations describing potential areas of infestation were considered 43 

in a sensitivity analysis, which showed that the model results had greatest sensitivity to number 44 

of alates released from nest, alate survival, maximum pheromone attraction distance between 45 

heterosexual pairs, and mean flight distance. Results showed that the areas predicted as infested 46 

in all simulation runs of a baseline model cover the spatial extent of all locations recently 47 

discovered. The model presented in this study could be applied to any invasive termite species 48 

after proper calibration of parameters. The simulation herein can be used by regulatory 49 

authorities to define most probable quarantine and survey zones.  50 

 51 

Keywords: Monte Carlo simulation, invasive species, individual-based approach, spatial 52 

stochastic simulation, habitat suitability 53 

 54 
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1. Introduction 55 

 56 

The primary anthropogenic means by which termites are transported between continents and 57 

islands is by maritime vessel (Scheffrahn and Crowe 2011). Over a dozen exotic termite species 58 

have become established worldwide (Evans 2011), of which six can be found in Florida 59 

(Scheffrahn et al. 2002). 60 

Termites are destructive insect pests that cause billions of dollars in property damage every 61 

year (Edwards and Mill 1986). Once a species is established, the natural dispersal of termite 62 

colonies proceeds slowly. Termite colonies typically require 4-6 years to mature, and once the 63 

first group of alates (winged reproductives) leaves the colony, they are unable to fly more than a 64 

few hundred meters from the parent colony (Husseneder et al. 2006; Messenger and Mullins 65 

2005; Mill 1983). Anthropogenic or “vehicular” dispersal is far more rapid and can be measured 66 

in km/h. However, such long distance movements lack predictability. Specifically, the nesting 67 

core of a termite colony (reproductives, brood, and most foragers) must be moved intact and both 68 

a water and food source must be associated with the core during movement (Hochmair and 69 

Scheffrahn 2010). 70 

The inherent complexity of a physical environment limits the applicability of mathematical 71 

models for realistic dispersal modeling of invasive species, and practical predictions are difficult 72 

to obtain (Pitt 2008). Analytical methods commonly used to model dispersal in the past and in 73 

some cases up to the present include: (i) simple reaction-diffusion models (Fisher 1937), which 74 

ignore any spatial interaction between individuals and do not consider single dispersal events; 75 

(ii) mixed diffusion-population growth models, which include a per capita growth parameter 76 

(Okubo 1980; Skellam 1951) or several demographic variables (Van Den Bosch et al. 1990); and 77 
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(iii)  integro-differential equation models, which separate population dynamics and dispersal into 78 

two stages (Neubert et al. 1995). More recently, computer-intensive approaches, such as 79 

spatially-explicit population models (SEPMs), have been able to incorporate both 80 

ecological/biological information at a population level with underlying habitat differences 81 

(Wiegand et al. 2004). 82 

Computer simulations seek to imitate the dynamics of various real world processes (Steyaert 83 

1993) rather than solving sets of equations. Simulation models are either deterministic or 84 

stochastic. The first model type gives a fixed output for a given set of input data and model 85 

parameters while the second model type includes at least one stochastic process and provides a 86 

probabilistic outcome (Law and Kelton 1982). The intrinsic dynamic component of a computer 87 

simulation provides the ability to estimate the rate at which an invading species is likely to 88 

occupy suitable areas. However, such models may represent a poor choice in cases where 89 

established populations are restricted to distinct areas of suitable habitat, since assuming 90 

universal dispersal abilities may not reflect the ability of a species to move from a current 91 

location to another potentially suitable habitat (Peterson et al. 2002). Whereas simulating the 92 

spread of invasive species beyond a decade into the future may decrease the reliability of the 93 

model outcome (Pitt et al. 2011), it should be noted that the invasive plant used by Pitt et al. 94 

(2011) has a much faster dispersal capacity compared to termites.  95 

Individual-based models (IBMs) are able to incorporate several rules describing the 96 

interactions between individual units considering each one of them as different, both 97 

physiologically and behaviorally (Huston et al. 1988). The complexity of the rules increases with 98 

the total number of parameters involved in describing them. However, complexity often comes at 99 

the expense of generality, which makes it necessary to select the most appropriate modeling 100 
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approach on a case by case basis. Small spatial scales, such as urban environments, are 101 

particulartly suitable for the development of IBMs, because they are complex enough to require 102 

simulation but not so large as to be unmanageable for an IBM. Also, IBMs are able to represent 103 

individuals explicitly and incorporate biologically relevant rules that have a strong influence on 104 

the dynamics of an invasion (Pitt 2008). 105 

In this paper, we develop a computer simulation using a spatially-explicit stochastic 106 

individual-based modeling approach and use hindcasting in order to predict which areas would 107 

have been infested by an arboreal invasive termite, Nasutitermes corniger (Motschulsky), had no 108 

eradication plan been implemented at a particular location, Dania Beach, FL. The methodology 109 

presented herein is appropriate for more general application, such as predicting the future 110 

geographical spread or studying a different termite species after appropriate adjustments in the 111 

model paramenters. 112 

Individual-based simulations consider the individual organism to be a logical basic unit for 113 

modeling ecological phenomena (Grimm and Railsback 2005). We ran each model from 2003, 114 

the year in which a first complete survey of infested locations had been conducted over the study 115 

area, until 2012. The model outcome is the predicted areas of infestation at any time step, 116 

indicating the spatial extent and dynamic evolution of the invasion. Beginning in 2003, local 117 

authorities have been trying to eradicate this pest from the original survey area. However, 118 

between 2006 and 2011, extended survey procedures had to be stopped due to discontinued 119 

funds. A new recent survey conducted in 2012 found newly infested locations in areas not 120 

spotted originally and therefore not included in the eradication plan. We believe that state or 121 

local regulatory agencies can benefit from a model that predicts the rate and direction of termite 122 
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dispersal, as it would assist them in targeting specific areas for survey, eradication, or quarantine 123 

efforts.  124 

In the literature, only two computer simulation models have been applied to a termite 125 

species: one has been developed to determine per-capita wood consumption rates of termite 126 

workers (Morales Ramos and Rojas 2005), while the other explored termite foraging behavior 127 

underneath the soil (Lee et al. 2008). To date, no computer simulation models have been 128 

published that investigate the geographic spread of a termite infestation from a set of surveyed  129 

locations. Unlike some other recently developed spatial simulation models found in the literature 130 

for other insects  (Carrasco et al. 2010; Pitt 2009) the human-mediated dispersal component is 131 

not included because of its unpredictability and lack of calibration data. Although samples 132 

collected over the past 10 years do not reflect the true (i.e. natural) expansion of the species, and 133 

were collected mainly for the purpose of verifying the success of the eradication effort, it is 134 

nevertheless possible to use the newly infested locations (2012) to ground truth our simulation 135 

model. 136 

We herein describe the parameters and methods used to develop the computer simulation. 137 

Results are presented together with a discussion on the relative importance of each biological 138 

parameter included in the model, followed by conclusions. 139 

 140 

 141 

 142 

 143 

 144 

 145 
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2. Materials and Methods 146 

 147 

2.1. Model Design 148 

 149 

The simulation algortihm is implemented using a set of R functions (R Development Core 150 

Team 2011) and we provide free source code. The model description follows the ODD 151 

(Overview, Design concepts, Details) protocol (Grimm et al. 2006; Grimm et al. 2010) in order 152 

to make the model's logic as clear as possible.  153 

 154 

2.1.1 Purpose of Model. 155 

 156 

We developed a spatial, stochastic computer simulation with the purpose of gaining a deeper 157 

understanding of the rate and direction of a termite invasion by natural means over a realistic 158 

landscape, such as an urban environment. In this study, the model is also used to determine how 159 

a new invasive species in South Florida, N. corniger, could have expanded from a set of 160 

surveyed locations up to the present, if no eradiction plan had been implemented throughout the 161 

years. The developed simulation model may assist state or local regulatory agencies in targeting 162 

specific areas for survey, eradication, or quarantine efforts.  163 

 164 

2.1.2.   Entities, State Variables and Scales. 165 

 166 

The basic entities of the model are individual termite alates (dispersing propagules) and all 167 

the individual colonies they are generated from. Both alates and colonies are characterized by 168 
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their continuous spatial location specified in a Cartesian plane coordinate system. Alates are also 169 

characterized by their sex (M-F), and colonies by their age (in years). We use a reference spatial 170 

grid to represent the distribution of all areas occupied by one or more termite colonies at each 171 

time step. The grid is set to an extent of 10 km x 10 km over the urban area of Dania Beach, FL, 172 

with a resolution of 100 x 100 meters. We believe that the chosen resolution is suitable for a few 173 

reasons such as the uncertainty associated with the precise locations of surveyed 174 

colonies/individuals, the approximate maximum extent of a colony’s foraging territory (Collins 175 

1981), and because it is a suitable scale of surveillance and pest control management. In order for 176 

the simulation to be more realistic, we also consider the local urban environment and exclude 177 

areas that are unsuitable for the establishment of a new colony, such as roads, highways, non-178 

wooded fields, and water bodies. Each area with wood sources (e.g., buildings, trees, boats, 179 

debris, etc.) has potential for colonization. We believe that for the chosen temporal resolution (10 180 

years) the choice of a static habitat suitability layer does not introduce any relevant bias in the 181 

results. However, should the model be run over a much longer time span, we recommend 182 

considering a different strategy. The temporal scale is discrete and one time step represents 1 183 

year. The model is run from 2003 (year of the first complete survey of infested locations) to 184 

2012.  185 

 186 

2.1.3. Process overview and scheduling. 187 

 188 

Dispersal of alates is the key process in the spread of colonies, and we simulate the dispersal 189 

as a single annual event. The consequence may be an increased chance for alates to find a mate 190 

and form a new colony. However, this represents a necessary simplification, since typical termite 191 
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dispersal is formed by a major exodus that may be preceded and/or followed by smaller flights, 192 

of unknown magnitude and timing. Many termite species initiate dispersal flights in the early 193 

stages of the wet season and are triggered by environmental factors (Jones et al. 1988; Martius 194 

2003; Nutting 1969). Dispersal flights are the only means by which new colonies can form 195 

beyond the foraging territory of the mother colony. Although the model simplifies the temporal 196 

scale of the real phenomenon, single massive dispersal flights are common because: (i) alates are 197 

less vulnerable as prey, as they can overwhelm predators by large numbers (Nutting 1969); and 198 

(ii) there are higher odds of finding and choosing a mate. 199 

 200 

2.1.4. Design Concepts. 201 

 202 

2.1.4.1. Sensing. Dispersing alates (reproductives) can sense and respond to pheremones in 203 

order to find potential mates of the opposite sex that have dispersed by chance to the nearby 204 

sites. 205 

2.1.4.2. Interaction. Male and female alates interact to form  new colonies. 206 

2.1.4.3. Stochasticity. Both distance and direction of dispersal by alates are determined 207 

stochastically from a probability distribution (see Section 2.1.7.4).  The  sex (male or female) of 208 

a particular alate is random. 209 

2.1.4.4. Collectives. Individual alates are followed during dispersal, but after a colony is 210 

formed by two alates of the opposite sex, the colony is followed as whole rather than at the 211 

resolution of individuals. 212 

 213 

2.1.5. Initialization.   214 
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 215 

Fig. 1 shows a schematic representation of the steps involved for the model initialization. 216 

 217 

Figure 1–caption at the end of file 218 

 219 

At the initial state, i.e. time t=1, the spatial locations of all surveyed termite colonies are stored in 220 

a dataset and assigned a random age between 0 and the maximum lifespan decided by the user. 221 

The initialization process is the same in all simulation runs. Surveyed colonies can be imported 222 

from an external data file containing their geographic coordinates, e.g. recorded with a GPS 223 

device. In most cases, the collected samples do not identify different termite colonies, as they are 224 

taken opportunistically with the goal of spotting an infestation. Therefore, different termite 225 

locations may or may not belong to the same colony. 226 

 227 

2.1.6. Input Data. 228 

 229 

Table 1 shows seven main parameters of the implemented dispersal model and their baseline 230 

values, i.e. the values assigned for the baseline simulation, which are based either on related 231 

literature findings (see Section 2.3) or the opinion of termite experts. More specific information 232 

for the particular location modeled, Dania Beach, FL, is described in Section 3. 233 

 234 

Table 1-end of file 235 

 236 

2.1.7. Submodels. 237 
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 238 

The simulation algorithm is composed of several modules ordered in a sequential manner and 239 

imitates the steps taken by a group of individual alates from the dispersal to the inception of a 240 

new colony. Figure 2 shows an overview of the main subprocesses and steps involved in the 241 

simulation at any generic time step. Each subprocess is discussed in detail below. 242 

 243 

Figure 2–caption at the end of file 244 

 245 

2.1.7.1. Habitat Suitability. The habitat suitability submodel checks the suitability of the 246 

underlying environment for all termite individuals after dispersal. If an individual alate falls 247 

within an unsuitable habitat, as defined by the user, then it is eliminated.  In order to include the 248 

local landscape in the simulation model and identify areas unsuitable for the establishment of 249 

new termite colonies, we combine the following vector-type spatial layers in a GIS (using 250 

ESRI’s ArcMap 10.0). A surface water layer published in 2006 was obtained from the Broward 251 

County GIS data online repository (Lelis 2006). We  used 2011 NAVTEQ NAVSTREETS street 252 

data for the street network layer and created a 10 m buffer around each line segment to model the 253 

approximate coverage of roads. Further, we extracted the Fort Lauderdale Airport area and its 254 

runways from the 2010 TomTom (formerly TeleAtlas) Multinet Dataset. 255 

     Because N. corniger, like other invasive termite species, needs a wood source as food, we 256 

added all agricultural field polygons to the collection of unsuitable areas. These polygons were 257 

extracted from a 2010 land use layer at the parcel level, which was obtained from  the University 258 

of Florida GeoPlan Center. The original land use layer was compiled by the the Florida 259 

Department of Transportation and contains 99 land use classes which have been collapsed into 260 
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15 classes by the GeoPlan Center (University of Florida Geoplan Center 2010). Using the union 261 

overlay operation in ArcMap, we combined all the GIS layers listed above into a single layer 262 

denoting unsuitable habitat areas in which colonies are not able to survive. 263 

2.1.7.2.  Alate Dispersal. The dynamics and speed of termite dispersal by natural means are 264 

controlled by several behavioral characteristics affecting the successful creation of new colonies. 265 

We identified and included such behavioral characteristics in the form of model parameters to 266 

better simulate the real process. A new colony begins with a male-female (i.e. king and queen) 267 

couple of unwinged alates building and sealing the nuptial chamber in a proper substrate, usually 268 

soil or wood. After a termite colony matures, which requires about 4 years, alates are produced. 269 

All alates change their behavior in response to: (i) changes of habitat, i.e. they may fall into an 270 

unsuitable patch of land and therefore are not able to find a location to form an incipient colony; 271 

(ii) their proximity to a heterosexual mate. Alates do not adjust their behavior over time as a 272 

consequence of their experience, since they only serve the purpose of expanding the colony with 273 

a one-time flight after which they either die or find a mate and become the king/queen of a new 274 

colony. Although they have eyes, alates are probably not able to predict which location will be 275 

suitable once in flight. Dispersal flights typically occur at dusk or at night after a light rain and 276 

during calm weather conditions. It is known that alates are attracted by lights, as found in mark-277 

recapture studies (Messenger and Mullins 2005). Sex pheromones have two main roles: a close-278 

range attraction and contact attraction. The former is used to unite sexual partners, the latter is 279 

used to maintain the contact during the tandem behavior (Nutting 1969). Alates do not release 280 

pheromones during the flight and therefore their flight behavior is not influenced by it. The 281 

processes that are modeled assuming they are stochastic, i.e., random, are the flight distance, 282 
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flight direction, and the sex of each individual. The model output is used to spot which areas 283 

have been occupied and how often throughout all 100 runs.  284 

2.1.7.3. Colony Formation. The colony formation subprocess loops through each grid cell 285 

that is occupied by at least two individuals and, subsequently, through each individual. This 286 

process is necessary to check if a reproductive is able to find a heterosexual neighbor and form a 287 

nuptial pair, where the neighborhood is defined by a circular buffer with the pre-set pheromone 288 

attraction radius. If two candidate alates are matched, a new colony is created and assigned 289 

spatial coordinates of the mid point between the two individuals. The process stops for a 290 

particular grid cell as soon as the maximum density of colonies per hectare is reached. At the end 291 

of the present subprocess, if one or more pairs of individuals are matched, new colonies are 292 

created and their spatial location is saved.  293 

2.1.7.4. Colony Aging and Alate Production. Each time step, the age of every existing colony 294 

is increased by one (aging submodel). If this value exceeds the maximum lifespan defined by the 295 

user, then the colony is eliminated from the map. After the aging subprocess, alates are generated 296 

by each existing colony based on colony age (dispersal subprocess). Older colonies generate 297 

more alates, which increase the overall chances for an individual reproductive to find a mate, a 298 

suitable nesting site, and a location farther away from the mother colony. The dispersal 299 

subprocess also executes the following: (i) random creation of male and female individuals by 300 

sampling from a Binomial distribution, Bin(n,p), where n is the number of alates to be generated 301 

and p is the probability of drawing a male, (ii) random sampling of flight directions (in radians) 302 

from a uniform distribution, Unif[0, 2π], (iii) random sampling of flight distances (Euclidean) 303 

from a negative exponential distribution, Exp(λ), with mean 1/λ (where λ = rate), and (iv) 304 
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calculation of new spatial locations X and Y (Easting and Northing) of alates derived from basic 305 

trigonometric equations, using both the simulated flight direction and flight distances.  306 

2.1.7.5. Updating the Distribution of Colonies on the Landscape. The final subprocess 307 

(stacking colonies subprocess) stacks all new colonies created during the previous process 308 

(colony formation) with the existing ones in a dataset. Before moving to the next time step, all 309 

colonies can be saved to an external shapefile as points and further converted to a geo-referenced 310 

raster grid. The raster grid allows us to overlay modeling results from multiple simulations and to 311 

compute a final occupancy envelope. At the following time step, new alates are generated which 312 

fly out from all mature colonies, i.e., colonies old enough to produce alates. 313 

 314 

2.2. Sensitivity Analysis 315 

 316 

We ran a sensitivity analysis to assess the contribution of each parameter to the model 317 

outcome. The uncertainty associated with the outcome of a stochastic simulation  was estimated 318 

through the Monte Carlo technique and 100 simulation runs. We chose this number as a 319 

compromise between short computational time and high precision of confidence intervals around 320 

the mean predicted area of infestation. A set of model realizations describing the effect of 321 

changes in parameter values on potential areas of infestation were also considered in a sensitivity 322 

analysis.  323 

 324 

2.3. Model Parameterization 325 

 326 
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We used basic data relevant to several termite species in order to parameterize the model. 327 

Unfortunately, there is not sufficient data to calibrate the model directly against N. corniger at 328 

the Dania Beach site. The age of colonies at the first production of alates, which varies between 329 

different termite species, can be derived from related literature studies. Typically, a colony takes 330 

four to six years from its creation to reach maturity and start the production of alates (Collins 331 

1981). In this paper, we set the baseline value of the age of first production to 4 years. Lifespan 332 

estimates are approximations because they only reflect laboratory conditions. Estimated maxima 333 

ranged from 15 years old in Macrotermes bellicosus (Keller 1998) to 20 years in 334 

Pseudacanthotermes spiniger and P. militaris (Connétable et al. 2012). In this work, we set an 335 

age threshold of 20 years, after which a colony dies. 336 

The maximum distance of pheromone attraction currently reported is 2.5-3 m by males 337 

(Leuthold and Bruinsma 1977). Here, we set the baseline value for the model at 3 meters. 338 

The density of termite colonies over a certain patch of land is related to its specific biology, 339 

ecology and behavior (Adams and Levings 1987). No specific literature sources studied the 340 

density of N. corniger's colonies within an urban environment. However, a study found a density 341 

of approximately 7 colonies per hectare in a primary forest in Panama (Thorne 1982), which we 342 

use as a baseline value in our model.  343 

Literature sources treating the topic of alate predation or alate flight success rate are scant. 344 

Both predation and injuries typically occur as alates start leaving the nest (i.e. pre-flight), in 345 

flight (bats and birds), and as soon as they alight on the ground or on a tree (i.e. post-flight) to 346 

search for a mate. Empirical observation of alates of a different invasive termite species, 347 

Cryptotermes brevis, found an approximate survival rate of 1%, excluding predation (Scheffrahn 348 

et al. 2001). Factors affecting the outcome and the success of the dispersal flight include 349 
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environmental conditions, number of alates, sex ratio, proportion of alates eaten by predators, 350 

and efficiency of the post-flight mating behavior (Noirot 1990; Nutting 1969). A recent field 351 

study for two termite species showed that, despite the presence of 40 mature colonies over an 352 

area of one hectare producing approximately one million alates every year, no new colonies were 353 

found (Connétable et al. 2012). In this paper, we set the baseline value of the overall survival rate 354 

to 0.01 (1%). We consider this to be a realistic estimate considering all the aforementioned 355 

factors (Scheffrahn, personal communication).  356 

Although sex ratios of termite alates are variable, they tend towards parity (Jones et al. 1988). 357 

In N. corniger, individual colonies produced alates whose sex ratio was around 1:1 (Darlington 358 

1986; Thorne 1983). Therefore, we set the baseline value of the prevalence of male alates in the 359 

colony to 0.5 (50%).  360 

Field studies aiming to precisely assess the size of an alate crop in individual colonies are 361 

rare. Several colonies of N. corniger have been compared and a noticeable variation in 362 

production of alates was found. Mature colonies, whose population size ranges between 50,000-363 

400,000 individuals, produced 5,000-25,000 alates (Thorne 1983). The production of alates 364 

likely depends on factors such as availability of food resources, health of queen(s), colony age, 365 

and colony-specific history. All factors are not easily assessed during the short time frame given 366 

in field sampling. In another invasive termite, Coptotermes formosanus, the alate production of a 367 

single colony was over 68,000.  In this case, sex ratio was 1:3 (F:M) (Su and Scheffrahn 1987).  368 

In the baseline simulation model, we used a “Low Profile” age-related alate production, defined 369 

as follows: (i) no production of alates until a colony reaches 4 years of age, (ii) 1,000 alates 370 

between 4 and 9 years of age, (iii) 10,000 alates between 10 and 14 years of age, and (iv) 371 

100,000 alates between 15 years and the age at which a colony dies. Opposed to this profile, we 372 
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also defined a “High Profile” scenario, with a greater production of alates at an earlier age: (i) no 373 

production of alates until a colony reaches 4 years of age, (ii) 10,000 alates between 4 and 9 374 

years of age, (iii) 50,000 alates between 10 and 14 years of age, and (iv) 100,000 alates between 375 

15 years and the age at which a colony dies. This alternative scenario is tested in our sensitivity 376 

analysis (see Section 4). Although these “profiles” may be an oversimplification, it is likely to 377 

match an average magnitude that is otherwise impossible to calibrate with precise empirical data 378 

(Scheffrahn personal communication). 379 

Termite alates are weak, erratic fliers. On average, alates are capable of flying a few hundred 380 

meters on their own (Nutting 1969). Flight distances have not specifically been estimated for N. 381 

corniger. However, it is possible to estimate this model parameter based on findings for other 382 

termite species. Mark-recapture studies using light traps gave the first empirical measurements of 383 

termite flight skills. A maximum distance of 892 m has been recorded for C. formosanus 384 

(Messenger and Mullins 2005). In an endemic habitat, alates may fly far enough to ensure that a 385 

mixture of different colonies is created with swarm aggregation (Husseneder et al. 2006). 386 

However, for an exotic population to spread, alates fly into uncolonized areas lacking 387 

conspecifics with which to mate. Recently, a new maximum distance record of about 1.3 km has 388 

been recorded by Mullins and Messenger in New Orleans, LA (Mullins, personal 389 

communication). Alates of Odontotermes formosanus were capable of flying between 120 and 390 

743 m (Hu et al. 2007). Other studies recorded only a few dispersal flights covering about 300 m 391 

for termite species belonging to the Termitidae family (Mill 1983), to which N. corniger belongs, 392 

or 460 m for C. formosanus (Ikehara 1966). In this study, we decided to sample dispersal flight 393 

distances from an exponential distribution. This allows for both short and rare longer dispersal 394 

events. In a unique mark-recapture study recently completed in New Orleans, LA, data collected 395 
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for alates of C. formosanus confirmed the “exponential” shape of the empirical histogram 396 

derived from several recorded flight distances (Mullins, unpublished data). We estimated the 397 

mean of the exponential distribution based on the aforementioned empirical data and literature 398 

findings. The baseline value used as a mean dispersal distance for the simulation model was set 399 

to 200 m.  400 

Two factors that affect alate dispersal distance during the swarm season are wind velocity 401 

and light intensity. In most cases, the flight is only initiated if the wind velocity stays below 3.5 402 

km/h (Leong et al. 1983). Moreover, termites are extremely prone to injuries, hence windless or 403 

low wind conditions are preferred. Given the impossibility of forecasting wind direction, wind 404 

speed, and light intensity in a multi-year simulation model, we assume alates can fly in any 405 

direction and sample all angles (in radians) from a uniform distribution. Moreover, we are using 406 

the present model within an urban environment, where light intensity is quite uniformly 407 

distributed and therefore we believe it will not affect the model outcome. 408 

 409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 
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3.  Application of Model to Specific Study Area and Data 419 

 420 

N. corniger was first reported in Florida in May 2001, in Dania Beach, Broward County, FL 421 

(Scheffrahn et al. 2002). The discovery represents the first record of a non-endemic and land-422 

based establishment of a higher termite (Family Termitidae) in the continental U.S. It is likely 423 

that the infestation was the result of dockside flights from an infested boat or shipping container, 424 

probably a decade before the discovery, but no specific source was identified (Scheffrahn et al. 425 

2002). Starting in early 2003, a previously delineated area was targeted for a deliberate 426 

eradication campaign of this invasive pest. In January 2003, an area-wide visual survey was 427 

conducted for nests, foraging tubes, foraging sites, and debris harboring living N. corniger. 428 

However, most N. corniger nest locations were cryptic and even an exhaustive survey is likely to 429 

miss some infested locations, especially in the case of young colonies. In 2006, survey work was 430 

discontinued due to budget cuts before being re-activated in 2011 (Scheffrahn, unpublished 431 

data). 432 

Exact sample locations were recorded using a GPS device and later imported into a database. 433 

A total area of 200 acres (approximately 81 ha) was surveyed, 20% of which had active 434 

infestations. Several epigeal nests  of different diameters were found at the base of both live and 435 

dead trees, in tree cavities above ground, and foraging tubes extended upward of 10 m on trees 436 

and palms (Scheffrahn et al. 2002). The maximum separation between active sites in north-south 437 

and east-west direction was approximately 1 km. A newly funded 2011-2012 survey revealed 438 

new infested locations. No pest reoccurrence was observed within the areas originally surveyed 439 

between 2003 and 2006 (Scheffrahn, unpublished data).  440 
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 Fig. 3 shows the known infested area in 2003, with a zoom over the recorded GPS locations 441 

of all sampled termites. The total area covers less than 0.25 km2 and consists of commercial, 442 

residential, marina, and vacant wooded properties. 443 

 444 

Figure 3–caption at the end of file 445 

 446 

 447 

 448 
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4. Results and Discussion 464 

 465 

The stochastic outcome of 100 computer simulations can be grouped and represented by 466 

different occupancy envelopes. A “>0%” occupancy envelope groups all areas predicted as 467 

occupied by the model in at least one simulation run. Similarly, a “>=50%” occupancy groups all 468 

areas predicted as occupied in at least half of all runs. Finally, the “100%” occupancy envelope 469 

groups areas that are predicted as infested in all runs. Fig. 4 shows a snapshot of the spatial 470 

expansion of N. corniger through time as predicted by the baseline simulation model, with color 471 

coding to represent the different occupancy envelopes. 472 

 473 

Figure4–caption at the end of file 474 

 475 

Between 2003 and 2004 in the model there was a larger expansion in the areas surrounding the 476 

first surveyed locations compared to all other time frames. There are two reasons for that: (1) 477 

alates fly in all directions and therefore, if the habitat is suitable, fill in all the voids; (2) After 478 

2004, most of the areas toward the center of invasion had already been invaded and therefore 479 

occupied by at least one colony. Moreover, both the “>0%” and “>=50%” occupancy envelopes 480 

were representing only areas that were not occupied in all simulation runs, hence they 481 

overestimate the predicted area and show a much larger extent than was likely to have been 482 

invaded. Areas covered by the "100%" envelope can be used to plan a first survey and either 483 

quarantine or eradicate the infestation. The other envelopes, instead, can be used as a "worst-case 484 

scenario", thus used as a maximum perimeter to plan a more effective eradication program. 485 

Overall the expansion seems to proceed slowly and it is possible to observe some barrier effect 486 
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represented by both highways and the airport ground on the shape of the predicted surfaces in the 487 

East-North East directions. Finally, a few isolated spots are predicted by the “>0%” envelope 488 

across the study area. However, these spots may have been predicted by a single simulation run 489 

out of 100 and we believe they should not be looked at as a threat.   490 

The contribution of each model parameter to the final outcome of the computer simulation is 491 

assessed with a sensitivity analysis. This is typically done by slightly changing the value of a 492 

given model parameter while keeping the other model parameters constant. Based on the change 493 

in output one can estimate how the uncertainty in the model output can be apportioned to 494 

uncertainty in that parameter. We evaluate the importance of each parameter through a set of 495 

metrics, which are: covered area, absolute area growth, relative area growth. All measures are 496 

expressed as Monte Carlo (or multi-run) averages, i.e., as arithmetic means of all 100 simulation 497 

runs. For six out of the seven parameters selected for the sensitivity analysis, as introduced in 498 

Table 1, we ran the simulation with two alternative values, giving a total of 12 alternative model 499 

realizations in addition to the baseline simulation. Further, a single change of value was tested 500 

for variable SCR because we were only interested in observing the effect of a different age 501 

dependent reproduction structure and did not have empirical data to justify more realistic 502 

alternative scenarios on that parameter. Detailed results from the global sensitivity analysis are 503 

shown in Supp. Table S1 (found in the online version). Relative and absolute growth rates in the 504 

table refer to changes in area compared to the previous year. Here, for the sake of brevity, we 505 

report the sensitivity analysis results using line charts and selecting the average predicted area of 506 

infestation through time as a representative measure of changed parameter settings. Fig. 5 shows 507 

the charts for the seven tested parameters. Each chart also contains a line of the baseline model 508 

as a reference. 509 
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 510 

Figure 5–caption at the end of file 511 

 512 

The parameters that have the largest overall influence on the model outcome, considering all 513 

evaluation metrics, are SCR (scenario of amount of alates generated by a colony), SURV (overall 514 

survival rate of alates), PHR (maximum pheromone attraction distance), and DIST (mean 515 

dispersal flight distance). The parameter MAR (prevalence of male alates in the colony) has the 516 

smallest effect. Both AFP (age of first production of alates) and DEN (density of colonies /ha) 517 

have a relatively small effect. When SCR is set to "High Profile" there is a large and sudden 518 

increase in the predicted infested area after the first four years, as described in Section 2.3. A 519 

higher number of alates is produced after reaching the age of first production and this increase is 520 

far more rapid compared to the "Low Profile" used in the baseline model. The PHR parameter 521 

has a large effect as it sets the rule for the maximum distance within which alates can find a 522 

mate. When the radial distance is reduced by two meters, the final predicted area is reduced to 523 

less than half of its corresponding baseline value. The SURV parameter controls the percentage 524 

of alates that are able to survive predation and find a mate. Therefore, the higher the percentage, 525 

the higher the chance to create new colonies at any time step. In general, the effect of a change in 526 

a model parameter accumulates over time. As an example, Fig. 6 (b-c) shows the effect of a 527 

change in the SURV parameter on the predicted area of infestation in the study area. For the sake 528 

of clarity, we only show the “100%” occupancy envelope.     529 

 530 

Figure 6–caption at the end of file 531 

 532 
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To corroborate our simulation model, we include all newly infested sites that were 533 

discovered in 2012. Figure 7 (right image) shows the infested areas predicted by the baseline 534 

simulation model with all three occupancy envelopes using 2003 sample sites as seed points (left 535 

image).  536 

  537 

Figure 7–caption at the end of file 538 

 539 

The “100%” occupancy envelope overlaps well with the 2012 empirical locations, while the 540 

“>0%” and “>=50%” envelopes overestimate termite spread.   541 

The main goal of this paper was to develop a stochastic individual-based simulation model 542 

that would give regulatory agencies a tool to anticipate possible areas of infestation and, at the 543 

same time, optimize the allocation of human and financial resources toward an eradication effort. 544 

Model output may be used by either local authorities or pest control agencies to draw one or 545 

more areas of intervention instead of randomly inspecting an unknown perimeter with 546 

subsequent waste of resources. For example, a greater amount of economic resources could be 547 

assigned to those zones encompassed by the “100%” predicted envelope. We used hindcasting in 548 

order to predict which areas in Dania Beach, FL, would have been infested up to the present if no 549 

eradication plan had ever been implemented. The model presented in this study is a generic 550 

model for termites and can be applied to any species after proper calibration of all the 551 

parameters. We tried to capture the complexity of a termite invasion and make the model more 552 

realistic by including several of the ecological-biological characteristics that control the 553 

dynamics and speed of their natural dispersal. 554 
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Some limitations of the model we presented include the precision of the estimates used to 555 

parameterize it. In some cases, parameters had to be estimated based on literature findings on 556 

termite species that are not the same as the one modeled. Unfortunately, this was necessary 557 

whenever an empirical estimate could not be found for N. corniger. Although the lack of precise 558 

estimates for N. corniger may affect the final outcome of the model, all values reflect a general 559 

tendency shared by most termite species. The precision of the model presented in this study will 560 

greatly benefit from newer and better empirical estimations for the species being modeled. 561 

Whenever calibration data are missing or scant, we suggest a consultation with a termite expert. 562 

Future research may expand from our work and implement a micro-level simulation model to 563 

simulate multiple dispersal steps within a single year. Moreover, future implementations may 564 

include, among other parameters, prevailing breeze direction and distance from city street lights 565 

for nocturnal dispersing species. The Monte Carlo technique is used to assess the uncertainty 566 

associated with the stochastic outcome of each model and to obtain an approximation of the 567 

answer to the problem. We decided to use occupancy envelopes in order to estimate areas of 568 

infestation with different likelihoods. Although the nature of the available data does not allow 569 

the use of a traditional model validation technique, the comparison with field samples via 570 

hindcasting provides at least some support to our conclusions. Results show that the areas 571 

predicted as infested in all simulation runs by our baseline model match all empirical sample 572 

locations well.   573 

A sensitivity analysis was used to check for the importance of each model parameter, 574 

indicating that in particular, the parameters settings for the amount of alates generated by a 575 

colony, overall survival rate of alates, maximum pheromone attraction distance, and mean 576 

dispersal flight distance heavily influenced the final outcome of the model. We believe this study 577 
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is potentially beneficial to termite science, pest control agencies, and to a general audience. The 578 

simulation model was implemented using the open source R programming language. The 579 

functions are freely available to the users and flexible to facilitate use in different future 580 

applications. The source code can be found at https://github.com/f-tonini/Termite-Dispersal-581 

Simulation. 582 
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Table 1. Model parameters: abbreviations, definitions, and their baseline values. 777 

Parameter Definition Baseline Value Source 
AFP Colony age at first production of alates 4 yrs (Collins 1981) 

PHR Maximum pheromone attraction distance 3 m 
(Leuthold and 
Bruinsma 1977) 

DEN Maximum density of colonies per hectare 7 (Thorne 1982) 

SURV Overall survival rate of alates* 0.01 (1%) 
(Scheffrahn et al. 
2001) 

MAR Prevalence of male alates in the colony 0.5 (50%) 
(Darlington 1986; 
Thorne 1983) 

SCR 
Scenario of amount of alates generated by a 
colony 

Low Profile 
(see Section 2.3) 

(Scheffrahn, 
personal 
communication) 

DIST Mean dispersal flight distance 200 m 

(Mullins, 
unpublished work, 
Scheffrahn, 
personal 
communication) 

 

* Overall percentage of alates surviving all phases of a dispersal flight 
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Figure Captions: 801 
 802 
 803 
Fig. 1. Structure of the initialization steps involved in the simulation model. 804 
 805 
Fig. 2. Core subprocesses involved in the individual-based simulation algorithm at any generic 806 
time step. 807 
 808 
Fig. 3. Location of samples of N. corniger collected during a field survey in 2003. The 809 
background satellite image on the top-right corner was taken from a set of historical images in 810 
Google Earth. Available in color online. 811 
 812 
Fig. 4. Snapshot of the areas predicted as infested by the baseline dispersal simulation model. 813 
Yellow, orange, and red cells indicate the >0%, >50%, and 100% occupancy envelopes, 814 
respectively. Top-left map: dots represent samples of N. corniger collected during a field survey 815 
in 2003, while green cells indicate the approximate areas of initial infestation. Available in color 816 
online. 817 
 818 
Fig. 5. Sensitivity analysis charts. Each of the seven parameters is compared to the baseline 819 
simulation model (blue line). Red and green lines represent the models with a small change in a 820 
given parameter, leaving all the other variables unaltered. Available in color online. 821 
 822 
Fig. 6. Model sensitivity to the SURV parameter. (a) Baseline simulation model. (b) SURV = 823 
.005 (0.5%) (c) SURV = .02 (2%). Available in color online. 824 
 825 
Fig. 7. Model evaluation. Original and predicted infested areas by N. corniger, with 2003 and 826 
2012 sampled termite locations. Available in color online. 827 
 828 
 829 
 830 
 831 
 832 
 833 
 834 
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