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Abstract  33 

Predicting the potential habitat of species under both current and future climate change scenarios 34 

is crucial for monitoring invasive species and understanding a species' response to different 35 

environmental conditions. Frequently, the only data available on a species is the location of its 36 

occurrence (presence-only data). Using occurrence records only, two models were used to 37 

predict the geographical distribution of two destructive invasive termite species, Coptotermes 38 

gestroi (Wasmann) and Coptotermes formosanus Shiraki. The first model uses a Bayesian linear 39 

logistic regression approach adjusted for presence-only data while the second one is the widely 40 

used maximum entropy approach (Maxent). Results show that the predicted distributions of both 41 

C. gestroi and C. formosanus are strongly linked to urban development. The impact of future 42 

scenarios such as climate warming and population growth on the biotic distribution of both 43 

termite species was also assessed. Future climate warming seems to affect their projected 44 

probability of presence to a lesser extent than population growth. The Bayesian logistic approach 45 

outperformed Maxent consistently in all models according to evaluation criteria such as model 46 

sensitivity and ecological realism. The importance of further studies for an explicit treatment of 47 

residual spatial autocorrelation and a more comprehensive comparison between both statistical 48 

approaches is suggested. 49 

 50 

Keywords: Bayesian logistic modeling, Maxent, presence-only data, subterranean termite, 51 

species distribution models 52 

 53 

 54 
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Introduction 56 

 57 

The use of statistical models to predict a species’ potential habitat has seen a growing interest 58 

during the past two decades given the importance of monitoring endangered or invasive species 59 

and understanding a species' response to different environmental conditions (Guisan and Thuiller 60 

2005). Such models are often referred to as habitat models, ecological niche models, or species 61 

distribution models (SDMs) (Elith and Leathwick 2007) and have been applied to a variety of 62 

fields such as ecology, conservation, and biogeography. SDMs attempt to model the species-63 

environment relationships by using sites of known occurrence (presence data) and, sometimes, 64 

non-occurrence (absence data) together with environmental variables recorded over the whole 65 

study area. In most cases, records from atlases, herbaria, or museum databases only contain 66 

information on a species' incidental observations (Franklin 2009). A fundamental limitation of 67 

presence-only datasets is that the prevalence of a species, i.e. the proportion of occupied sites 68 

across the study area, is unknown. In recent years, several statistical methods have been 69 

proposed for modeling these types of datasets, such as inhomogeneous Poisson process (IPP), 70 

(Warton and Sheperd 2010, Chakraborty et al. 2011), and maximum entropy (Maxent) (Phillips 71 

et al. 2004, Phillips et al. 2006). Other approaches use presence-absence models by assuming 72 

random samples chosen from the region of interest (background samples) as absences (also 73 

called "pseudo-absences") (Elith et al. 2006). However, this assumption has been shown to have 74 

substantial problems of model specification, interpretation, and implementation (Warton and 75 

Sheperd 2010). 76 

In this work, a recently developed Bayesian logistic regression model adjusted for presence-77 

only data (Divino et al. 2011, Divino et al. 2013) and the widely used maximum entropy 78 
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approach were used to predict the current and future biotic distributions of two major invasive 79 

termite pests within the state of Florida: the Asian subterranean termite (AST), Coptotermes 80 

gestroi (Wasmann), and the Formosan subterranean termite (FST), Coptotermes formosanus 81 

Shiraki. The Bayesian approach used herein has only been tested on artificial data prior to this 82 

study (Divino et al. 2013). 83 

The highly invasive AST and FST are, or will become, the most destructive subterranean 84 

termites in areas of suitable climate, causing severe damage to wood in service (Evans et al. 85 

2013). AST is endemic to southeast Asia and it is currently found mostly in tropical areas (Li et 86 

al. 2009). FST is probably endemic to southern China and is found primarily in subtropical and 87 

temperate regions (Li et al. 2009). AST and FST are only known to occur sympatrically in 88 

Taiwan, Florida, and Hawaii (Li et al. 2010). AST was first found in Florida in 1996 (Dade 89 

County) and is a more recent invasive species compared to FST, discovered in Florida in 1980 90 

(Broward County) (Scheffrahn 2013). Both species are now well established pests in Florida. 91 

Regional predictions of the potential habitat of the two termite species under both current and 92 

future climate scenarios are currently lacking in the available literature. A single recent study 93 

attempted to predict the ecological niche of AST on a global scale using mostly coarse-precision 94 

occurrence data derived from the literature (Li et al. 2013). However, the reliability of such 95 

predictions could be affected by the excessive extent of the study area used for both model 96 

calibration and estimation, given the small amount of available occurrence data.  97 

  The format of this paper is as follows. The study area, data, variables, and modeling 98 

approaches used are described in the Materials and Methods section. Results and their 99 

interpretation are then presented, followed by a final discussion on the advantages and 100 

limitations of the models tested herein.  101 
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 102 

Materials and Methods 103 

 104 

Study Area and Species Data 105 

 106 

Florida was selected as a common study area for both AST and FST in order to compare the 107 

performance of two different statistical approaches under the same environmental conditions. 108 

Termite collection localities, including winged reproductives and/or nonvolent foragers, were 109 

taken from the University of Florida Termite Collection at the Fort Lauderdale Research and 110 

Education Center. Winged reproductives were taken from within infested structures, and 111 

therefore in close proximity to their foraging nest mates and stationary nests. Geographical 112 

coordinates of 280 and 411 separate land-based colonies of AST (1996-2012) and FST (1985-113 

2012), respectively, were used in this study (Fig. 1). A few records representing boat infestations 114 

(Scheffrahn and Crowe 2011) were excluded. All database samples were collected less than 40m 115 

from buildings by R.H.S., pest control professionals, property owners, entomologists, and others 116 

interested in species-level identification. About 95% of foraging caste samples were collected 117 

within 5-10 m or inside the structures themselves. 118 

 119 

Figure 1–caption at the end of file 120 

 121 

 The study area was divided into roughly 38,000 2-km grid cells and all termite observations 122 

falling within a given cell were aggregated to a single point. After aggregation, a total of 65 and 123 

160 occurrences were considered for AST and FST, respectively. In this work, grid cells were 124 
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considered as independent given the explanatory variables and the probability of presence was 125 

modeled for each one of them. The chosen spatial resolution attenuates some of the bias caused 126 

by spatial dependence between nearby occurrences because termite reproductives from a mature 127 

colony fly only a few hundred meters during their annual dispersal flights (Nutting 1969). 128 

Moreover, the available environmental data used in this study were obtained at a 2.5-arcmin (~4 129 

km) resolution and it is appropriate to consider a sampling unit whose size is equal (or close) to it 130 

(Elith and Leathwick 2009). Finally, the number of occurrences available after the 131 

aforementioned spatial aggregation ensures robustness of the estimates from the statistical 132 

models used herein. 133 

 134 

Predictor Variables 135 

 136 

A set of gridded climatic variables was selected (Table 1) based on both its ability to directly 137 

influence the ecophysiology of both AST and FST (Gautam and Henderson 2011), and on 138 

suggestions taken in consultation with termite experts. Data for historical climatic conditions 139 

were extracted from two sources: (i) the PRISM Climate Group database (Daly et al. 2002) and 140 

(ii) the WorldClim (1950-2000) database (Hijmans et al. 2005). General annual trends such as 141 

annual total precipitation (prec), average daily mean dew point temperature (dew), and average 142 

daily maximum (tmax) and minimum (tmin) temperatures were obtained from the PRISM 143 

database, representative of average historical conditions for the years of available occurrence 144 

records of both AST and FST. Two bioclimatic variables representing extreme or limiting factors 145 

such as maximum temperature of the warmest month (bio5) and minimum temperature of the 146 

coldest month (bio6) were chosen from the WorldClim database, representative of 1950-2000 147 
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average historical conditions. Both WorldClim and PRISM data were obtained at a 2.5-arcmin 148 

(~4 km) resolution and further resampled down using bilinear interpolation to maintain the 149 

higher data resolution of the reference spatial grid over the study area. The available time series 150 

of historical climate data from PRISM (1895-Present) allowed us to extract those years that 151 

matched historical occurrence records for both AST and FST exactly. 152 

In addition to climate variables, the U.S. Geological Survey National Land Cover Database 153 

(NLCD) 2006 (Multi-Resolution Land Characteristics Consortium 2012) was also used (see 154 

Table 1), which has a native resolution of 30 m. The database comes with 20 land cover classes, 155 

which were modified according to the following steps: (1) reduction from 20 to 8 main land 156 

cover classes according to the NLCD 2006 product legend; (2) creation of single layers for each 157 

land cover class from the previous step; and (3) aggregation of each land cover layer from 30 m 158 

to our 2-km reference grid by expressing each cell value as the percentage of land cover 159 

contained within.  160 

Finally, centroids of grid cells occupied by termite locations were also used in some of the 161 

statistical models (see Tables 2 and 3) in order to account for the geographic proximity between 162 

collection sites across the geographic space. Locations were expressed by their projected easting 163 

and northing values. All layers, including the 2-km reference grid, were mapped using the 164 

NAD83 / Florida GDL Albers projection to minimize distance distortions throughout the study 165 

area. 166 

 167 

Table 1–caption at the end of file 168 

 169 
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Most predictor variables in our dataset were highly correlated and their simultaneous 170 

presence in statistical models has been proven to cause several problems (e.g. biased parameter 171 

estimates or lower efficiency in the estimates) (Farrar and Glauber 1967). Therefore, an a priori 172 

choice of variables was carried out in order to exclude pairs of highly correlated variables (r  173 

0.8). A different set of models was also estimated using principal components obtained from the 174 

full set of predictor variables considered herein. Principal component loadings are shown in 175 

Supp. Table S1 (available in the online version). 176 

 177 

Future Scenarios 178 

 179 

The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) 180 

describes a set of alternative CO2 emissions scenarios grouped under four main narrative 181 

storylines (Intergovernmental Panel on Climate Change 2007). In this study, the A2 emission 182 

scenario was used, which forecasts an average increase in global surface temperature of about 183 

3.4°C by 2100. This scenario was preferred over others in order to assess the impact of a larger 184 

climate change on both termite species' potential distributions and consider it as a benchmark 185 

"worst-case" scenario. 186 

Given the uncertainty associated with the path of future climate change, average projections 187 

of annual precipitation and minimum/maximum temperatures for the years 2040-2069 (referred 188 

to as 2050s hereafter) were extracted from the Climate Change, Agriculture and Food Security 189 

(CCAFS) web portal (Climate Change Agriculture and Food Security 2013). Projections of 190 

annual mean dew point temperatures were not available from any data provider, hence this 191 

predictor variable could not be considered for future scenarios.  192 
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The three following Atmospheric-Oceanic Global Circulation Models (GCMs hereafter) 193 

(Diniz-Filho et al. 2009), statistically downscaled using the so-called delta method (Ramirez-194 

Villegas and Jarvis 2010), were selected for the A2 emission scenario and the 2050s time frame: 195 

GFDL-CM 2.1, NCAR-CCSM 3.0, UKMO-HadCM3.  196 

A projected population growth scenario in 2060 was obtained from the University of Florida 197 

GeoPlan Center (University of Florida Geoplan Center 2013). The dataset assumes no further 198 

population growth in areas currently urbanized.  199 

First, we assumed a change in the climatic variables under the A2 emission scenario given by 200 

the three selected GCMs, assuming no change in population. Then, we added a population 201 

growth scenario together with climate change, resulting in a total of six future scenarios for each 202 

species. To create "consensus" maps of projected probabilities in the 2050s, predictions were 203 

averaged over the three GCMs. This method has been shown to significantly increase the 204 

accuracy of species distribution forecasts (Marmion et al. 2009). 205 

 206 

Modeling Approaches 207 

 208 

In this study, several models were considered using two statistical approaches for presence-209 

only data (see Tables 2 and 3): (i) maximum entropy (Phillips et al. 2006); and (ii) a Bayesian 210 

linear logistic regression adjusted for presence-only data, named Bayesian for presence-only data 211 

(BPOD) hereafter (Divino et al. 2011, Divino et al. 2013). The former, was presented in Phillips 212 

et al. (2004) and it is widely used for modeling distributions of species (Elith et al. 2011). The 213 

BPOD, builds upon the work presented in Ward et al. (2009) while using a Bayesian framework. 214 
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Although different in their theoretical backgrounds, both methods use the Bayes' rule as an 215 

important point to calculate the probability of presence of the species conditioned on the 216 

environment. An outline of the theory, main assumptions, and modeling settings used in both 217 

approaches follows.  218 

 219 

Maximum Entropy Approach. 220 

 221 

Maximum entropy (Maxent hereafter) is a machine-learning method that uses species 222 

occurrences and a random sample of background environmental data over a region of interest to 223 

predict species distributions. Let us define ܲݎ(ܺ = ܻ | ݔ = 1) to be the probability distribution 224 

of covariates, i.e. environmental variables, across locations where the species is observed (Y = 1), 225 

and ܲݎ(ܺ = ܻ | ݔ = 0) to be the probability distribution of covariates where the species is 226 

absent (Y = 0). The quantity of interest is the probability of presence of a species, 227 ܲݎ(ܻ = 1 | ܺ =  conditioned on a set of environmental covariates X. Maxent considers the 228 ,(ݔ

modeling of ܲݎ(ܺ = ܻ|ݔ = 1) and uses the Bayes' rule to estimate the sought conditional 229 

probability distribution: 230 

ܻ)ݎܲ = 1 | ܺ = (ݔ = ܻ | ݔ)ݎܲ = ܻ)ݎܲ(1 = (ݔ)ݎܲ(1                   
The core of the Maxent "raw" model output is the estimate of the ratio ܲݔ)ݎ | ܻ =  231 .(ݔ)ܲ/(1

This is accomplished by seeking an estimate of  ܲݔ)ݎ | ܻ = 1) that is consistent with available 232 

occurrence data. Among several possible distributions, one that maximizes the entropy of 233 ܲݔ)ݎ | ܻ = 1) or, in other words, minimizes the relative entropy of ܲݔ)ݎ | ܻ = 1) with respect 234 

to ܲ(ݔ)ݎ (measured using the Kullback-Leibler divergence) is chosen. The distribution of 235 

maximum entropy, i.e. closest to the uniform probability distribution or most spread out, is 236 
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estimated while being subject to a set of constraints imposed by the information available from 237 

the environmental conditions where the species occurs.  238 

Environmental variables or functions thereof are known as "features" and are treated as an 239 

expanded set of variables to be added as terms in the model specification. A random sample of 240 

background locations informs the model about ܲ(ݔ)ݎ. The set of constraints on ܲݔ)ݎ | ܻ = 1) 241 

ensures that empirical averages of each feature approximate their averages at sites where the 242 

species is present (or a random sample thereof). 243 

The probability distribution of maximum entropy is a Gibbs distribution, which has an 244 

exponential form (Della Pietra et al. 1997). Raw exponential values estimated by the model are 245 

scale-dependent, e.g. they can be extremely small if the study area is large, and only represent a 246 

measure of relative suitability of each site. However, the model can also be transformed from an 247 

exponential family model into a logistic model, thus making it more comparable with other 248 

machine learning or generalized linear/additive models (Phillips and Dudik 2008).  249 

To calculate the final conditional probability of occurrence ܲݎ(ܻ = 1|ܺ =  knowledge of 250 ,(ݔ

the prevalence of the species ܲݎ(ܻ = 1) =  i.e. the proportion of occupied sites across the 251 ,ߨ

study area, is required. However, ߨ is unknown with presence-only data (Ward et al. 2009). In 252 

this case, the maximum entropy approach sets this quantity arbitrarily to 0.5. 253 

  254 

 Bayesian for Presence-only Data (BPOD) Approach. 255 

 256 

When dealing with presence-only data, sampling from the reference population of locations 257 

cannot be performed under the traditional random sampling design. Specifically, while a random 258 

sample of presences is available, a random sample of absences cannot be obtained. Therefore, a 259 
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random sample of "contaminated controls", i.e. a random sample of locations from the whole 260 

reference population (background sample) that can also include some occurrences of the species, 261 

is matched with the aforementioned random sample from the available occurrence data 262 

(Lancaster and Imbens 1996). 263 

In order to estimate the regression parameters, a two-level scheme is used: (1) a first level 264 

describing the probability law that generates the population data; and (2) a second level using a 265 

stratified case-control design, modified for presence-only data to select samples from the 266 

population. In a traditional logistic regression, the response variable Y = 0 marks the absence of 267 

an attribute of interest in the population, while Y = 1 marks the presence of the same attribute. 268 

The key point in the BPOD approach is the introduction of a stratum variable Z, considered as 269 

the only observable variable. Specifically, Z = 0 means that a location is collected from the 270 

whole reference population, while Z = 1 indicates that a location is collected from the sub-271 

population of presences. Z = 1 implies that Y = 1, while Z = 0 implies that Y is an unknown value 272 {0,1} ߳ ݕ. The introduction of the stratum variable Z allows us to define a linear logistic 273 

regression, adjusted for presence-only data. Denoting by ܲݎ(ܼ = ܥ|1 = 1, ܺ =  the 274 (ݔ

probability that a location is sampled (C = 1) from the set of locations where the species of 275 

interest is present (Z = 1) and with covariates X = x, the linear logistic model for presence-only 276 

data can be defined as: 277 logitܲݎ(ܼ = ܥ|1 = 1, ܺ = (ݔ = ߚݔ +  ,ݍ
where q is a correction term, depending on the number of presences truly observed and the 278 

unknown number of presences hidden in the sample of "contaminated" controls. An 279 

approximation of q  can be derived iteratively within the estimation algorithm. After 280 
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prior distributions are defined over the parameters of interest (the linear coefficients ߚ and the 281 

unobserved responses in the sample of "contaminated" controls), Bayesian inference can be 282 

carried out through Markov Chain Monte Carlo (MCMC) techniques (Robert and Casella 2004). 283 

In particular, an algorithm including a data-augmentation step (Tanner and Wong 1987) is used 284 

285 

with linear coefficients of the logistic model. 286 

 287 

Evaluation of Model Performance. 288 

 289 

In this study, model performance is evaluated according to three criteria: (i) prediction 290 

accuracy of occurrence data, i.e. model sensitivity expressed by the percentage of correctly 291 

predicted occurrences in the sample; (ii) goodness of fit, using both the Akaike Information 292 

Criterion (AIC, Akaike 1974) and its corrected version (AICc, Burnham and Anderson 2002); 293 

and (iii) ecological realism, i.e. assessing predictions against prior biological knowledge of a 294 

species. AIC and AICc for all Maxent models were calculated using the ENMTools (Warren and 295 

Seifert 2011) which uses Maxent "raw" suitability scores, i.e. exponential values standardized 296 

over the study area. Several other traditional statistical evaluation metrics such as Cohen's Kappa 297 

(Cohen 1960) or the area under the receiver operating characteristic curve (AUC, Hanley and 298 

Mcneil 1982) are commonly used with presence-absence (or pseudo-absence) data. However, in 299 

this study we do not make any assumption of pseudo-absence for background data. While model 300 

sensitivity was compared across all models and both statistical approaches, AIC and AICc values 301 

were only used to compare the relative quality of each model within the same statistical approach 302 

in order to provide a mean for model selection. This is crucial because Maxent’s model structure 303 
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is different from BPOD, hence values of both AIC and AICc cannot be compared across models 304 

considered in both approaches.  305 

 306 

Sampling Scheme. 307 

 308 

The following background sampling schemes were used with respect to Maxent and BPOD 309 

modeling approaches. 310 

Each Maxent model was run 16 times, with the background sample size set to 10,000 311 

randomly selected points. Although there are not set guidelines regarding the ideal number of 312 

background points to use in each situation, some recent studies found that predictive accuracy of 313 

Maxent was best with about 10,000 points (Barbet-Massin and Jiguet 2012) over areas 314 

comparable in size to our study. Moreover, some studies found that predictive accuracy of 315 

Maxent was best with about 10,000 points (Barbet-Massin and Jiguet 2012). All other settings in 316 

the MaxEnt software have been used with their default values (Phillips et al. 2006). 317 

Each BPOD model was run 500 times, with sample size set according to the 318 

presence/background ratio of 1:4, as used by Ward et al. (2009). Specifically, in AST a sample of 319 

65 observed presences was matched with a background sample of 65×4=260 locations (total 320 

sample size n=325), while for FST a sample of 160 observed presences was matched with a 321 

background sample of 160×4=640 locations (total sample size n=800). The MCMC algorithm 322 

with data augmentation used 15,000 iterations (10,000 burn-in) to estimate the unknown model 323 

parameters.  324 

The reason for using different sampling schemes between Maxent and BPOD is due to the 325 

fact that the two approaches have different requirements for reaching robust parameter estimates. 326 
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Specifically, Maxent needs a large background sample, while BPOD needs a large number of 327 

model replications. Given these constraints, we chose model settings accordingly and used 328 

roughly the same amount of “sampling information” (see Supp. Table S2-S3 available for the 329 

online version). In both approaches, parameter estimates were obtained as averages over all 330 

model replications. 331 

 332 

Results 333 

 334 

Several models were run to predict the current potential distribution of both AST and FST. A 335 

list of the best performing models is shown in Table 2 for AST and Table 3 for FST, together 336 

with their evaluation metrics.  337 

 338 

Table 2–caption at the end of file 339 

 340 

Table 3–caption at the end of file 341 

 342 

For AST, the model that reached the highest overall performance in the maximum entropy 343 

approach was M1, while in the BPOD approach it was MPC3, which used the first three 344 

principal components as covariates. Fig. 2 (a-b) shows the current potential distributions of AST 345 

predicted by the best overall models in both approaches, thus BPOD-MPC3 and Maxent-M1, 346 

respectively. Southeastern Florida and the Keys Islands show a much higher suitability compared 347 

to other areas, matching the general pattern of recorded occurrences. Low probabilities are also 348 
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predicted along the east coast up to central Florida and on the west coast around urban areas such 349 

as Ft. Myers and Tampa.  350 

 351 

Figure2–caption at the end of file 352 

 353 

For FST, the model that reached the highest overall performance in the maximum entropy 354 

approach was MPC3, while in the BPOD approach it was MPC6, using the first three principal 355 

components and all six principal components as covariates, respectively. Fig. 3 (a-b) shows the 356 

current potential distributions of FST predicted by the best overall models in both approaches, 357 

thus BPOD-MPC6 and Maxent-MPC3, respectively. Highest suitability values are associated 358 

with urbanized areas across the entire state. Although no occurrences were recorded in some 359 

urban areas, a medium-to-high suitability is predicted for the species in areas such as North-West 360 

Florida around Pensacola, along the west coast in Sarasota and Port Charlotte, along the east 361 

coast in Melbourne and Palm Coast, and all the Keys islands south-west of Key Largo. 362 

 363 

Figure3–caption at the end of file 364 

 365 

Future predicted probabilities of presence were derived using a model from the BPOD 366 

approach for both AST and FST. Due to data availability (see Materials and Methods), the 367 

BPOD-M1 model was chosen to predict their future distributions. Fig. 4 (a-b) shows the 368 

contemporary predictions calculated using model BPOD-M1 for AST and FST, respectively. A 369 

visual inspection suggests that predictions are not much different from the best models that used 370 

principal components as covariates, with the exception of a few areas for FST such as the Keys 371 
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Islands or the west coast of Florida where the suitability is slightly lower. Fig. 4 (c-d) shows 372 

average "consensus" projected probabilities, i.e. averaged over the three GCMs, for AST and 373 

FST, respectively, under climate change conditions for the 2050s time period and given no 374 

change in land cover. The climate variables that are projected to the future from M1 are 375 

precipitation, bio5, and bio6. Urban areas in southeast Florida seem to have an increased 376 

predicted probability of presence for AST, while for FST changes in suitability are less 377 

noticeable. The population growth scenario (Fig. 4 e-f) increases the percentage of areal units 378 

occupied by developed areas, thus increasing the variable "devel" (refer to Table 1) in our model. 379 

The effect of a combined change in climate and developed areas increases the predicted 380 

probabilities of presence for both AST and FST. However, the effect is much more noticeable for 381 

the latter across the whole study area.     382 

 383 

Figure4–caption at the end of file 384 

 385 

Discussion 386 

 387 

The performance of the BPOD approach on both species was shown to be consistently better 388 

than the widely used maximum entropy method, with a few exceptions, in terms of sampling 389 

sensitivity (see Table 3). Whenever the model covariates were highly informative on a species 390 

geographical distribution (e.g., for AST), the BPOD approach performed consistently better than 391 

maximum entropy. In fact, the highest sensitivity reached by any Maxent model was 61%, hence 392 

lower than the worst BPOD model (76%). When the model covariates are less informative for 393 

predicting distribution, as for the FST, BPOD performs better than MaxEnt in 78% of the cases. 394 
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Finally, the best BPOD model gave more realistic predictions from an ecological perspective 395 

compared to the best Maxent model for both species. Specifically, for FST maximum entropy 396 

tends to over-predict areas across the entire state, far apart from recorded occurrences, and 397 

under-predict areas close to them (Fig. 3). Although this phenomenon is less pronounced for 398 

AST, areas in the metropolitan southeast Florida are under-predicted nearby recorded 399 

occurrences.  400 

The BPOD approach makes a better use of the information from PCA-derived variables 401 

compared to maximum entropy, as its predictive power increases until reaching an optimum in 402 

terms of sensitivity and both information criteria (see Tables 2-3). However, such models behave 403 

in a slightly different manner between the two species. In particular, BPOD models for AST 404 

reach an optimum with a smaller number of PCA-derived variables than FST (3 vs. 6 principal 405 

components, respectively). This probably means that the original environmental variables 406 

enclosed in the first three principal components are sufficient to explain the ecological niche of 407 

AST in Florida. FST, tolerating broader climatic and environmental gradients than AST, has 408 

attained generic species status in Florida where it occurs in all major human population centers 409 

of the State. This result also suggests that some environmental factors influencing the habitat of 410 

FST may be missing from these analyses.  411 

Maxent models reported in this paper were estimated by fitting linear responses to 412 

relationships between response and predictor variables in order to keep comparability between 413 

the two different statistical approaches. Maxent models fitting more complex responses were 414 

also tested but had a much lower predictive performance compared to the ones fitting linear 415 

features. A major advantage of the BPOD approach over maximum entropy is that the MCMC 416 

algorithm does not require the a priori knowledge of the population prevalence as it is 417 
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considered as a further parameter in the model. This overcomes the issue of prevalence 418 

specification pointed out by Ward et al. (2009). A Bayesian modeling framework allows 419 

flexibility in the treatment of uncertainty while making full inference on the probability of 420 

presence possible. However, a more formal comparison between the two statistical approaches 421 

based on artificial data is suggested for future studies. 422 

In this paper, statistically downscaled climate projections for the 2050s were preferred over 423 

dynamically downscaled projections, such as the CLARReS10 dataset for the Southeast United 424 

States (Stefanova et al. 2012). Although the latter are able to incorporate regional-scale 425 

processes, their spatial resolution (~10 km) was too coarse to assess the effect of variation in 426 

climate and urbanization on the same scale used for contemporary predictions for both termite 427 

species. Climate change under the A2 scenario for the 2050s has a moderate effect on both 428 

species' geographical distribution. Conversely, a combined effect of climate change with a 429 

population growth scenario has a larger impact on their projected probabilities, especially for 430 

FST. This suggests that both termite species are influenced by urban development much more 431 

than by climate alone. 432 

Two issues not fully addressed in this work are the residual autocorrelation that may still 433 

persist among neighboring occurrences and the problem of observer bias (Syfert et al. 2013). In 434 

order to reduce spatial autocorrelation, we chose a spatial resolution at which termite occurrences 435 

can be assumed independent of each other given the explanatory variables (see Materials and 436 

Methods). Spatially explicit models, i.e. models with spatial autoregressive component (Cressie 437 

1993) or latent spatially structured component (Zuur et al. 2009), might be available to refine our 438 

final predictions. However, a reasonable way of generating pseudo-absences must be found and 439 

these models are computationally intensive to estimate. The issue of observer bias would be hard 440 
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to address in the models developed herein because the data comes from different sources and 441 

involves multiple data collectors (see Materials and Methods). All samples were not collected 442 

using road accessibility criteria, hence standard solutions, e.g. adding information on road 443 

distance within the models (Phillips and Dudik 2008), could not be implemented in this study. 444 

The treatment of such a complex issue is deferred to future work. 445 
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Table 1. Climatic and environmental variables used and their data source for both AST and FST. 589 

Database Variable  Description 

PRISM prec Annual total precipitation 

dew Average daily mean dew point temperature 

tmax Average daily maximum temperature 

tmin Average daily minimum temperature 

WORLDCLIM bio5 Maximum temperature of the warmest month 

bio6 Minimum temperature of the coldest month 

NLCD 2006 water Open water or permanent ice/snow 

cover 

devel High percentage (

concrete, buildings, etc.). 

barren Bare rock, gravel, sand, silt, clay, or other earthen material, with little 

or no "green" vegetation 

forest Tree cover (> 6 m tall). Tree canopy accounts for 25% to 100% of the 

cover 

shrub Natural/semi-natural woody vegetation with aerial stems (< 6 m tall) 

herb Natural/semi-natural herbaceous vegetation (75% - 100% of the cover) 

cultiv Herbaceous vegetation that has been planted or is intensively 

managed for the production of food, feed, or fiber (75% - 100% of the 

cover) 

wetlands Soil or substrate is periodically saturated with or covered with water 

 590 

 591 
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Table 2. List of main models used for AST, their sampling sensitivity, and information criteria. M1: X 592 

(easting), prec, bio5, bio6, all land cover variables. M2: prec, bio5, bio6, all land cover variables. M3: X 593 

(easting), Y (northing), prec, bio5, all land cover variables. MPCx: x stands for the number of principal 594 

components used as covariates. The best models are highlighted in bold. 595 

Approach Model Sampling Sensitivity AIC AICc 

BPOD 

M1 0.96 62.2 38.2 

M2 0.96 63.2 38.4 

M3 0.96 67.7 41.1 

MPC1 0.76 118.3 112.4 

MPC2 0.90 78 70.2 

MPC3 0.97 48.8 39 

MPC4 0.97 50.1 38.3 

MPC5 0.97 51.4 37.8 

MPC6 0.97 52.5 36.9 

Maxent 

M1 0.61 823.4 825.2 

M2 0.61 828.7 830.6 

M3 0.60 857.6 860 

MPC1 0.40 1066 1066 

MPC2 0.61 942 942 

MPC3 0.60 828.8 829.2 

MPC4 0.60 829.1 829.8 

MPC5 0.58 831.7 832.5 

MPC6 0.57 830.2 831.1 

 596 
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Table 3. List of main models used for FST, their sampling sensitivity, and information criteria. M1: X 597 

(easting), prec, bio5, bio6, all land cover variables. M2: prec, bio5, bio6, all land cover variables. M3: X 598 

(easting), Y (northing), prec, bio5, all land cover variables. MPCx: x stands for the number of principal 599 

components used as covariates. The best models are highlighted in bold. 600 

Approach Model Sampling Sensitivity AIC AICc 

BPOD 

M1 0.73 391.1 366 

M2 0.73 391.4 367 

M3 0.73 391.5 367.2 

MPC1 0.05 689.2 683.2 

MPC2 0.53 529.7 521.8 

MPC3 0.71 396.3 386.4 

MPC4 0.71 395.1 383.2 

MPC5 0.72 388.6 374.8 

MPC6 0.74 382.8 367 

Maxent 

M1 0.55 2712.9 2714.2 

M2 0.55 2713.1 2714 

M3 0.57 2712 2713.2 

MPC1 0.66 1177 1177.1 

MPC2 0.59 1047.4 1047.6 

MPC3 0.66 956.8 957.2 

MPC4 0.57 968.5 969.1 

MPC5 0.61 963.6 964.6 

MPC6 0.58 961.1 962.5 

 601 

 602 
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Figure Captions: 603 

 604 

Fig. 1. Florida occurrences of AST (green) and FST (purple). Available in color online. 605 

 606 

Fig. 2. Current predicted probabilities of presence for AST. (a) BPOD-MPC3 model. (b) 607 

Maxent-M1 model. Darker red areas correspond to areas with higher probabilities. Available in 608 

color online. 609 

 610 

Fig. 3. Current predicted probabilities of presence for FST. (a) BPOD-MPC6 model. (b) Maxent-611 

MPC3 model. Darker red areas correspond to areas with higher probabilities. Available in color 612 

online. 613 

 614 

Fig. 4. Current and average projected probabilities of presence for the 2050s time period. (a) 615 

BPOD-M1 contemporary predictions for AST. (b) BPOD-M1 contemporary predictions for FST.  616 

(c) BPOD-M1 projected predictions for AST averaged over the GFDL-CM 2.1, NCAR-CCSM 617 

3.0, and UKMO-HadCM3 global circulation models under the A2 emission scenario. (d) BPOD-618 

M1 projected predictions for FST averaged over the GFDL-CM 2.1, NCAR-CCSM 3.0, and 619 

UKMO-HadCM3 global circulation models under the A2 emission scenario. (e) BPOD-M1 620 

projected predictions for AST averaged over the GFDL-CM 2.1, NCAR-CCSM 3.0, and 621 

UKMO-HadCM3 global circulation models under the A2 emission scenario and population 622 

growth. (f) BPOD-M1 projected predictions for FST averaged over the GFDL-CM 2.1, NCAR-623 

CCSM 3.0, and UKMO-HadCM3 global circulation models under the A2 emission scenario and 624 
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population growth. Darker red areas correspond to areas with higher probabilities. Available in 625 

color online. 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 

 635 

 636 

 637 

 638 

 639 

 640 

 641 

 642 

 643 

 644 

 645 

 646 

 647 



29

FIGURE 1 648

 649

650

651

652

653

654

655

656

657



30
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FIGURE 3 674
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